Densities and Excess Volumes of the 1-Chlorobutane + n-Hexane System at Temperatures from (283.15 to 333.15) K and Pressures from (0.1 to 35) MPa

Andrzej Gołdon, Iwona Malka, and Tadeusz Hofman*

Division of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warszawa, Poland

Densities of pure 1-chlorobutane, pure *n*-hexane, and their mixtures have been measured with an accuracy of $\pm 0.2 \text{ kg} \cdot \text{m}^{-3}$, over a temperature range of (283.15 to 333.15) K and a pressure range of (0.1 to 35) MPa using a vibrating tube densimeter. The experimental densities have been correlated by the Tait equation with the temperature-dependent parameters for pure components and by the van Laar-type equation with the temperature- and pressure-dependent parameters for the solution. The excess volumes have been calculated on the basis of experimental data, and the pressure and temperature influence on this property have been discussed.

Introduction

The volumetric properties of liquid mixtures and their constituents are considered among the most important physicochemical data. Although their direct influence on the technological applications is rather limited, they give a deeper insight into the molecular interactions, and hence they are an important tool used to verify thermodynamic models. Despite almost one century of a continuous effort of numerous experimenters, the set of these data covers only a very narrow range of possible systems and values of the parameters. This state concerns all the kinds of thermodynamic data which mainly have been measured at 298 K and under atmospheric pressure.

This paper presents experimental densities and the related properties for the 1-chlorobutane + *n*-hexane system over a broad range of concentrations, temperatures, and pressures. This mixture may be considered as an example of the solution of two components built of linear molecules composed of different kinds of functional groups. It is a typical system for which the group contribution models can be applied or tested.

The densities and excess volumes of the 1-chlorobutane + n-hexane system have been reported in the literature at three temperatures, (293.15, 298.15, and 313.15) K. All these measurements were performed under normal pressure.^{1–5}

Experimental Section

Materials. 1-Chlorobutane (Sigma Aldrich, purity stated 99.8 % and water content not greater than 0.01 %) was dried over 0.4 nm molecular sieves for several days, and *n*-hexane (Chemipan, Poland, purity stated 99.9 %) was degassed in an ELMA (Germany) ultrasonic bath at about 320 K for 60 min before measurement. The water used in the calibration was purified and deionized (conductivity below $0.8 \,\mu \text{S} \cdot \text{cm}^{-1}$) by a reverse osmosis unit with an ion-exchange system (Cobrabid-Aqua, Poland) and next degassed in the same manner as the pure components. The liquid mixtures were prepared by mass using the WA 36 precision balance manufactured by MeraWag-

Table 1. Experimental Densities ρ for 1-Chlorobutane and *n*-Hexane as a Function of Temperature *T* and Pressure *p*

			-			-	
p/MPa	283.15	293.15	298.15	303.15	313.15	323.15	333.15
		ρ/k	g∙m ⁻³ of	1-Chloro	butane at	T/K	
0.1	897.21	886.18	880.63	874.92	863.82	852.43	840.79
2.5	899.51	888.63	883.17	877.59	866.65	855.47	844.06
5.0	901.82	891.13	885.72	880.23	869.49	858.54	847.37
10.0	906.30	895.89	890.65	885.43	874.93	864.35	853.61
15.0	910.57		895.36	890.24	880.07	869.85	859.47
20.0	914.69	904.73	899.79	894.84	884.94	875.03	864.97
25.0	918.63	908.90	904.09	899.24	889.61	879.94	870.17
30.0	922.33	912.88	908.22	903.46	894.04	884.62	875.12
35.0	926.05	916.77	912.17	907.47	898.33	889.10	879.82
		ŀ	o/kg∙m ⁻³	of <i>n</i> -Hex	ane at T/k	ζ.	
0.1	668.07	659.18	654.61	649.97	640.82	631.41	621.80
2.5	670.36	661.67	657.21	652.70	643.76	634.61	625.32
5.0	672.69	664.17	659.81	655.36	646.69	637.80	628.77
10.0	677.06	668.87	664.66	660.53	652.13	643.69	635.13
15.0	681.19	673.27	669.24	665.23	657.16	649.12	640.94
20.0	685.08	677.40	673.51	669.63	661.86	654.14	646.27
25.0	688.82	681.33	677.56	673.81	666.28	658.84	651.23
30.0	692.35	685.07	681.40	677.77	670.44	663.23	655.89
35.0	695.65	688.63	685.02	681.45	674.41	667.40	660.30

Poland, with an accuracy of $1 \cdot 10^{-5}$ g. The estimated uncertainty of the mole fraction was about 10^{-4} .

Apparatus. The Anton Paar density measuring cell for high pressures and high temperatures (DMA 512P) and the mPDS 2000 evaluation unit were used for the density measurements. The density of a sample was determined by measuring the oscillation period of the U-shaped tube. The pressure was measured with the maximum uncertainty of \pm 0.01 MPa, and temperature was kept constant within \pm 0.01 K. A detailed description of the apparatus can be found elsewhere.⁶

The densimeter was calibrated with water and an empty evacuated U-tube according to the procedure by Lagourette et al.⁷ The densities of water were calculated from the parameters recommended by the International Association for the Properties of Water and Steam.⁸

The combined expanded uncertainty for the measured densities of pure compounds should not exceed $\pm 0.1 \text{ kg} \cdot \text{m}^{-3}$ at

* To whom correspondence should be addressed. E-mail: hof@ch.pw.edu.pl.

Figure 1. Fractional deviations $100(\rho - \rho_{\rm lit})/\rho_{\rm lit}$ between the measured and literature densities of 1-chlorobutane at 298.15 K (hollow symbols) and at 318.15 K (filled symbols) as a function of pressure. The literature data are taken from: (at 298.15 K); Δ , ref 9; \bigcirc , ref 10; \diamondsuit , ref 11; (at 318.15 K); \blacktriangle , ref 9; \bigcirc , ref 10; \diamondsuit , ref 11; (at 318.15 K); \bigstar , ref 9; \bigcirc , ref 10; \diamondsuit , ref 11. The smoothed measured values were calculated by eqs (1 to 3) with the values of parameters given in Table 2. Dotted interpolation lines visualize the observed trends.

Figure 2. Fractional deviations $100(\rho - \rho_{\rm lit})/\rho_{\rm lit}$ between the measured and literature densities of *n*-hexane at 298.15 K (hollow symbols) and 318.15 K (filled symbols) as a function of pressure. The literature data are taken from: (at 298.15 K); Δ , ref 12; \Box , ref 13; ∇ , ref 14; \bigcirc , ref 15; \diamondsuit , ref 16; (at 318.15 K); \blacksquare , ref 13; \blacklozenge , ref 16. The smoothed measured values were calculated by eqs (1 to 3) with the values of parameters given in Table 2. Dotted interpolation lines visualize the observed trends.

normal pressure and about $\pm 0.2 \text{ kg} \cdot \text{m}^{-3}$ at higher pressures. The latter value is only two times greater than the estimated inaccuracy of the experimental densities of pure water used in the calculations. The actual combined standard uncertainties for pure components are about $\pm 0.03 \text{ kg} \cdot \text{m}^{-3}$ as may be concluded from the standard deviations between the raw and correlated data. The combined standard uncertainty for the mixture density must be higher than that of a pure component due to errors in concentration. This is estimated to be $\pm 0.05 \text{ kg} \cdot \text{m}^{-3}$.

Figure 3. Isobaric expansivities α of the x_1 {1-chlorobutane + $(1 - x_1)n$ hexane} solutions as a function of concentration x_1 at various temperatures and pressures. The lines are calculated at temperatures T/K = (283.15, 298.15, 318.15, and 333.15) through a differentiation of eq 4 with the values of parameters given in Tables 2 and 4: solid, p = 0.1 MPa; dashed, p = 35MPa. The higher the temperature, the higher the values of the isobaric expansivity. The symbols represent experimental data of Matilla et al.¹⁹ under 0.1 MPa and at: \bigcirc , 298.15 K; $\textcircled{\bullet}$, 318.15 K.

Figure 4. Isothermal compressibilities κ of the x_1 {1-chlorobutane + (1 - x_1)*n*-hexane} solutions as a function of concentration x_1 at different temperatures and different pressures. The lines are calculated at temperatures T/K = (283.15, 298.15, 318.15, and 333.15) through a differentiation of eq 4 with the values of parameters given in Tables 2 and 4: solid, p = 0.1 MPa; dashed, p = 35 MPa. The higher the temperature, the higher the values of the isothermal compressibility. The symbols represent experimental data of Matilla et al.¹⁹ under 0.1 MPa and at: \bigcirc , 298.15 K; \bigcirc , 318.15 K.

The calculated combined expanded uncertainty of the excess volume is about $\pm 0.02 \text{ cm}^3 \cdot \text{mol}^{-1}$, although the standard deviation of the curve fit suggests that the standard value can be two times lower.

Results

Densities of Pure 1-Chlorobutane and Pure n-Hexane. The densities of pure components were measured at temperatures

Table 2. Coefficients of the Tait Equations (1 to 3) Fitted to the Experimental Densities of 1-Chlorobutane and *n*-Hexane and the Root of Mean Squared Deviations σ of the Fit

	$A \cdot 10^{2}$	B_i	$ ho_{0i}$	$\sigma/\text{kg}\cdot\text{m}^{-3}$
1-chlorobutane	8.73074	B_0 /MPa = 418.461	$\rho_{00}/\text{kg}\cdot\text{m}^{-3} = 1403.13$	0.029
		B_1 /MPa·K ⁻¹ = -1.71350	$\rho_{01}/\text{kg}\cdot\text{m}^{-3}\cdot\text{K}^{-1} = -3.15555$	
		$B_2/\text{MPa}\cdot\text{K}^{-2} = 1.84737\cdot10^{-3}$	$\rho_{02}/\text{kg}\cdot\text{m}^{-3}\cdot\text{K}^{-2} = 7.26411\cdot10^{-3}$	
		-	$\rho_{03}/\text{kg}\cdot\text{m}^{-3}\cdot\text{K}^{-3} = 8.58085\cdot10^{-6}$	
<i>n</i> -hexane	8.45619	$B_0/MPa = 346.053$	$\rho_{00}/\text{kg}\cdot\text{m}^{-3} = 857.038$	0.032
		$B_1/MPa \cdot K^{-1} = -1.48766$	$\rho_{01}/\text{ kg}\cdot\text{m}^{-3}\cdot\text{K}^{-1} = -0.448186$	
		$B_2/MPa \cdot K^{-2} = 1.66412 \cdot 10^{-3}$	$\rho_{02}/\text{kg m}^{-3} \cdot \text{K}^{-2} = -7.73814 \cdot 10^{-4}$	

T/K = (283.15, 293.15, 298.15, 303.15, 313.15, 323.15, and 333.15) and under pressures p/MPa = (0.1, 2.5, 5.0, 10.0, 15.0, 10.0, 15.0, 10.0, 15.0, 10.0,

Figure 5. Excess volumes $V^{\mathbb{E}}$ of the x_1 {1-chlorobutane + $(1 - x_1)n$ -hexane} solutions as a function of concentration x_1 at T = 298.15 K and under p = 0.1 MPa. Symbols denote experimental data taken from: \bigcirc , this work; \diamondsuit , ref 2; \triangledown , ref 4; \triangle , ref 5. The solid line is calculated by eqs (4 to 6) with the values of parameters given in Table 4.

Figure 6. Excess volumes V^{E} of the x_1 {1-chlorobutane + $(1 - x_1)n$ -hexane} solutions as a function of concentration x_1 under p = 0.1 MPa and at different temperatures. Symbols denote experimental data taken from this work at temperature: \bigcirc , 283.15 K; \diamondsuit , 298.15 K; \bigtriangleup , 333.15 K. The solid lines are calculated by eqs (4 to 6) with the values of parameters given in Table 4.

20.0, 25.0, 30.0, and 35.0) at each temperature. They are given in Table 1. The experimental densities were correlated by the Tait equation

$$\rho(T,p) = \frac{\rho_0(T,p_0)}{1 - A \ln \frac{B(T) + p}{B(T) + p_0}} \tag{1}$$

with the reference pressure p_0 equal to 0.1 MPa. The ρ_0 and *B* parameters were assumed to be dependent on temperature in the form of a power expansion, i.e.

$$\rho_0(T, p_0) = \sum_{i=0}^{3} \rho_{0i}(T/\mathbf{K})^i$$
(2)

$$B(T) = \sum_{i=0}^{2} B_{i} (T/K)^{i}$$
(3)

The number of terms in the above expressions was determined statistically. The fitted parameters and the standard deviations are given in Table 2.

Figure 1 shows a comparison between our smoothed densities of 1-chlorobutane and the literature data at (298.15 and 318.15) K and under pressures ranging from (0.1 to 39) MPa.^{9–11} As expected, the lowest residuals are at 298.15 K and under low pressures where they do not exceed 0.02 % and are only twice as high at 39 MPa. At the temperature 318.15 K, these discrepancies are considerably higher reaching even 0.12 %, but such a level of residuals is mainly due to the outstanding

Figure 7. Excess volumes V^{E} of the x_1 {1-chlorobutane + $(1 - x_1)n$ -hexane} solutions as a function of concentration x_1 at 323.15 K and under different pressures. Symbols denote experimental data taken from this work under pressure: \bigcirc , 0.1 MPa; \triangle , 35 MPa. The solid lines are calculated by eqs (4 to 6) with the values of parameters given in Table 4.

Table 3.	Experimental D	ensities ρ for th	e x ₁ {1-Chlorobut	ane + $(1 - x_1)$) <i>n</i> -Hexane}	Solutions as a	Function o	of Mole	Fraction x ₁ ,	Temperature
T, and Pi	ressure <i>p</i>									

				ρ/	kg·m ⁻³ at p/M	Pa			
x_1	0.1	2.5	5.0	10.0	15.0	20.0	25.0	30.0	35.0
1				T = 29	2 15 V				
0.10085	688 16	600 51	602.85	607.27	701 44	705 42	700.18	712 77	716.20
0.10985	707 78	710.17	712 52	716.94	701.44	705.42	709.18	732 50	736.03
0.21203	707.78	726.49	712.52	733 31	727.55	725.18	728.95	732.39	752.55
0.31601	724.14	720.49	723.62	738.08	742.33	746.36	750 17	753.86	757.33
0.01001	723.91	750.19	752.56	757.05	761.32	765 38	760.17	755.80	776 47
0.40499	768.40	770.19	752.50	777.64	781.91	785.99	789.24	703 50	707.15
0.49777	703.40	703.76	706.11	800.62	804.80	808.98	812.80	816.62	820.23
0.68604	813.10	815.54	817.80	822.30	826.60	830.80	834.70	838 47	842.08
0.82030	840 71	852.04	85/ 38	858.86	863.18	850.80	871 21	875.01	878.63
0.02757	869.66	871.97	874.31	878.80	883.07	887.19	891.13	894.92	898 57
0.90250	007.00	0/1.)/	074.51	070.00	005.07	007.17	071.15	0)4.)2	070.57
				T = 29	3.15 K				
0.10985	679.00	681.50	684.03	688.77	693.23	697.41	701.41	705.17	708.81
0.21203	698.47	701.01	703.52	708.30	712.77	717.01	721.03	724.84	728.53
0.29248	714.61	717.13	719.69	724.48	728.99	733.23	737.29	741.13	744.84
0.31601	719.31	721.84	724.38	729.18	733.71	737.99	742.03	745.88	749.61
0.40499	738.08	740.60	743.13	747.97	752.50	756.78	760.90	764.76	768.53
0.49777	758.47	761.00	763.54	768.33	772.88	777.19	781.30	785.20	788.98
0.59750	781.32	783.84	786.39	791.18	795.72	800.04	804.20	808.12	811.92
0.68694	802.85	805.38	807.91	812.71	817.27	821.60	825.76	829.70	833.53
0.82939	839.13	841.63	844.15	848.93	853.49	857.83	861.98	865.95	869.81
0.90250	858.87	861.35	863.85	868.63	873.18	877.51	881.68	885.66	889.53
				T = 29	8.15 K				
0.10985	674.32	676.93	679.56	684 48	689.11	693.45	697.55	701.45	705.16
0.21203	693.72	696.34	698.96	703.92	708.60	712.95	717.10	721.06	724.80
0.29248	709.76	712.38	715.02	719.98	724.66	729.06	733.24	737.22	741.00
0.31601	714 52	717 11	719 75	724 72	729 39	733.80	737.94	741.91	745 72
0 40499	733.09	735.72	738.37	743.38	748.10	752.52	756.74	760.75	764.57
0 49777	753.40	756.03	758.67	763.66	768.37	772.82	777.05	781.09	784.94
0 59750	776.16	778 78	781 41	786 38	791.12	795 57	799.82	803.90	807.76
0.68694	797.59	800.23	802.86	807.84	812.57	817.04	821.30	825.39	829.27
0.82939	833.73	836.30	838.91	843.87	848.59	853.07	857.35	861.46	865.37
0.90250	853.37	855.94	858.53	863.49	868.18	872.66	876.94	881.06	884.99
0170200	000107	00000	000100			072100	070171	001100	001177
0.40005		(======	177.01	T = 30	3.15 K	600.10	(00.54	(0 7 1	
0.10985	669.66	672.37	675.06	680.26	685.01	689.49	693.71	697.71	701.46
0.21203	689.16	691.90	694.62	699.79	704.53	708.98	713.22	717.27	721.06
0.29248	704.96	707.69	710.41	715.60	720.39	724.92	729.21	733.29	737.11
0.31601	709.76	712.51	715.21	720.44	725.23	729.73	733.98	738.06	741.91
0.40499	728.25	730.98	733.71	738.89	743.69	748.24	752.58	756.71	760.56
0.49777	748.32	751.02	753.76	759.01	763.87	768.43	772.80	776.94	780.82
0.59750	770.96	7/3.66	776.40	/81.6/	/86.55	791.14	/95.51	/99.69	803.62
0.68694	792.32	795.01	/9/./4	802.98	807.83	812.44	816.83	821.01	824.94
0.82939	828.52	831.20	833.88	839.08	843.86	848.41	852.75	856.96	860.94
0.90250	847.81	850.48	853.16	858.38	863.22	867.82	872.22	876.44	880.41
				T = 31	3.15 K				
0.10985	660.25	663.22	666.15	671.67	676.77	681.54	686.03	690.26	694.28
0.21203	679.39	682.37	685.31	690.86	695.99	700.78	705.32	709.59	713.66
0.29248	695.16	698.14	701.06	706.60	711.76	716.60	721.16	725.44	729.55
0.31601	699.82	702.79	705.74	711.27	716.43	721.27	725.85	730.12	734.28
0.40499	718.21	721.17	724.11	729.65	734.82	739.68	744.28	748.61	752.76
0.49777	738.18	741.14	744.08	749.65	754.83	759.70	764.34	768.68	772.87
0.59750	760.70	763.65	766.58	772.10	777.29	782.18	786.80	791.20	795.40
0.68694	781.81	784.75	787.66	793.20	798.39	803.30	807.96	812.36	816.59
0.82939	817.54	820.43	823.33	828.82	833.99	838.90	843.57	847.97	852.24
0.90250	836.89	839.76	842.65	848.11	853.27	858.17	862.84	867.27	871.55
				T = 32	3 15 K				
0 10085	650.68	653.88	657.08	663.04	668 52	673 62	678 38	682 82	687.05
0.10905	660.65	672.84	676.07	682.04	687 54	602 66	607 17	701.05	706 22
0.21203	685.16	688 38	601 50	607 57	703 11	708 23	713.06	717 59	700.22
0.27240	680.81	603.01	606 22	702.21	707.76	712.02	717 75	722.30	721.07
0.01001	708.00	711 21	714 /1	720.41	725.96	731.15	736.01	740 50	744 94
0.40477	700.00	730.07	73/ 25	740.23	7/5 81	751.15	755.89	760.39	761 87
0.49777	750.16	752 27	756 50	762 10	768 07	772.25	778 17	782 70	787 22
0.59750	750.10	753.52	750.52	782.49	788.07	70/ 16	700.17	803 70	808 14
0.00094	806 56	800.67	812.80	818 60	87/ 71	870 /2	821 26	830.01	8/12/7
0.02939	875 76	878 81	831.04	827 87	8/2 25	8/18 55	852 17	858 16	867 62
0.70250	025.10	020.04	051.74	057.02	0-5.55	0-0.33	055.77	050.10	002.05

	$\rho/\text{kg}\cdot\text{m}^{-3}$ at p/MPa									
x_1	0.1	2.5	5.0	10.0	15.0	20.0	25.0	30.0	35.0	
<i>T</i> = 333.15 K										
0.10985	640.84	644.37	647.85	654.25	660.12	665.54	670.56	675.27	679.71	
0.21203	659.59	663.28	666.60	673.04	678.96	684.42	689.51	694.27	698.78	
0.29248	674.97	678.48	681.96	688.41	694.34	699.82	704.94	709.73	714.25	
0.31601	679.61	683.13	686.60	693.04	698.97	704.46	709.59	714.38	718.92	
0.40499	697.62	701.13	704.59	711.02	716.97	722.46	727.62	732.45	737.02	
0.49777	717.27	720.76	724.22	730.64	736.59	742.10	747.28	752.13	756.72	
0.59750	739.37	742.80	746.27	752.68	758.64	764.16	769.35	774.27	778.90	
0.68694	760.13	763.57	766.97	773.35	779.29	784.83	790.03	794.94	799.60	
0.82939	795.31	798.68	802.05	808.40	814.33	819.85	825.07	830.00	834.70	
0.90250	814.35	817.70	821.05	827.36	833.22	838.75	843.95	848.89	853.59	

Table 4. Coefficients of the Equation Fitted to the Experimental Densities of the 1-Chlorobutane + n-Hexane System as a Function of Mole Fraction, Temperature, and Pressure, Equations (4 to 6), and the Root of Mean Squared Deviations σ of the Fit

i	$a_i/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$	b_i	$\sigma/\text{kg}\cdot\text{m}^{-3}$
0	1.07757	2.35854	0.052
1	$-9.62495 \cdot 10^{-3}$	$-2.16323 \cdot 10^{-2}$	
2	$3.99783 \cdot 10^{-3}$	$5.27443 \cdot 10^{-3}$	

character of the data of García-Giménez et al.¹¹ Our data are closest to the second data set of Morávková and Linek¹⁰ with the discrepancies not greater than 0.03 % for the whole examined ranges of temperatures and pressures.

The discrepancies between experimental densities of *n*-hexane^{12–16} are greater than for 1-chloroalkane. Our data are situated somewhere between the data reported in the literature, although usually they are slightly lower than the latter ones. This is particularly visible at higher temperatures and under higher pressures. The fractional deviations between our data and those reported in the literature at (298.15 and 323.15) K are shown in Figure 2. The maximum deviations under the highest pressures reach almost 0.20 %, but the average deviations are less than 0.1 % which is consistent with the analysis of the experimental density data of *n*-hexane given by Cibulka and Hnědkovský.¹⁷

Densities and Mechanical Properties of the 1-Chloroalkane + n-Hexane Mixtures. The densities for the mixtures 1-chloroalkane + n-hexane were measured at ten different mole fractions, at temperatures T/K = (283.15, 293.15, 298.15, 303.15, 313.15, 323.15, and 333.15) and under pressures p/MPa = (0.1, 2.5, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, and 35.0). They are given in Table 3.

The mixture densities were correlated by the six-parameter equation in which the excess volume was formally represented by a sum of the van Laar terms¹⁸ in which only one term turned out to be statistically significant

$$\rho(T, p, x_1) = \frac{M_1 x_1 + M_2 x_2}{M_1 x_1 / \rho_1^0(T, p) + M_2 x_2 / \rho_2^0(T, p) + \frac{a(T, p) x_1 x_2}{b(T, p) x_1 + x_2}}$$
(4)

where M_i , x_i , and ρ_i^0 stand for molecular weight, mole fraction, and density of the *i*th component, respectively, and a(T, p) and b(T, p) are the parameters linearly dependent on *T* and *p* according to the formulas

$$[a(T, p)/cm^{3} \cdot mol^{-1}] = a_{0} + a_{1}[(p/MPa) - 0.1] + a_{2}[(T/K) - 283] (5)$$

$$b(T, p) = b_{0} + b_{1}[(p/MPa) - 0.1] + b_{2}[(T/K) - 283] (6)$$

It was confirmed statistically that the higher-order terms in the above expansions could be neglected. The correlation equation requires six adjustable parameters $(a_0, a_1, a_2, b_0, b_1, b_2)$ which were adjusted to the experimental densities with the overall standard deviation of 0.052 kg·m⁻³. The values of parameters are given in Table 4.

Equations 1 to 6 enable one to calculate isothermal compressibilities and isobaric expansivities of the mixture. Figures 3 and 4 show typical dependencies of both properties with respect to mole fractions at temperatures T/K = (283.15, 298.15,318.15, and 333.15) and under pressures (0.1 and 35) MPa. The composition dependencies are monotonous and almost linear with a very weak curvature. The observed linearity is better visible under higher pressures where the difference between properties of pure components is reduced. The calculated mechanical properties agree well with the experimental data of Matilla et al.¹⁹measured under normal pressure and for equimolar compositions at (298.15 and 313.15) K.

Excess Volumes of the 1-Chloroalkane + n-Hexane Mixtures. Experimental excess volumes were calculated from the measured densities of solutions and pure components and are shown in Table 5.

The excess volumes could be correlated by the Redlich–Kister equation with 2 to 3 parameters per each temperature and pressure, leading to the standard deviations ranging from (0.003 to 0.014) cm³·mol⁻¹. The overall standard deviation equal to 0.012 cm³·mol⁻¹ was obtained if the excess volumes were calculated on the basis of eq 4 with the values of parameters taken from Table 4.

Figure 5 shows the excess volumes at 298.15 K and 0.1 MPa drawn against the data already reported in the literature. The discrepancies between different sets of experimental data are rather significant, reaching almost 30 % in the vicinity of the maximum value. Our data are very close to the data of Crespo Colin et al.,² being higher than the remaining ones.

The values of the experimental excess volumes are positive and rather low if compared to the majority of binary systems, with the maximum values ranging from (0.13 to 0.19) $\text{cm}^3 \cdot \text{mol}^{-1}$. The composition dependencies are unsymmetrical with the maximum located slightly below 0.4 of the mole fraction of 1-chlorobutane. The excess volumes increase with the increase of temperature and decrease with the increase of pressure. This first observation was noted previously by Domínguez et al.⁴ on the basis of the data measured at (298.15 and 313.15) K and under atmospheric pressure.

Figure 6 illustrates how the temperature influences excess volumes under a constant pressure equal to 0.1 MPa, and Figure 7 shows the pressure dependence of the same property at 323.15 K. Both the temperature and pressure influence on the excess volume is rather weak. The values of the derivative $(\partial V^E/\partial T)_P$, which are positive, increase with a decrease of temperature and increase of pressure, while the negative values of the $(\partial V^E/\partial T)_P$.

Table 5.	Experimental Excess	Volumes V ^I	E for the x_1 {1-C	Chlorobutane + (1 -	$-x_1$) <i>n</i> -Hexane}	Solutions as a	Function of Mole Fr	action x_1 ,
Temperat	ture T, and Pressure p	,						

				$V^{\rm E}/c$	$m^3 \cdot mol^{-1}$ at $p/$	'MPa			
<i>X</i> ₁	0.1	2.5	5.0	10.0	15.0	20.0	25.0	30.0	35.0
1				$T - 2^{\circ}$	3 15 K				-
0 10985	0.090	0.082	0.082	1 - 20.	0.077	0.070	0.072	0.067	0.053
0.21203	0.152	0.139	0.139	0.080	0.134	0.070	0.132	0.124	0.116
0.29248	0.145	0.141	0.143	0.140	0.134	0.131	0.131	0.123	0.110
0.31601	0.163	0.165	0.158	0.160	0.154	0.149	0.153	0.141	0.137
0.40499	0.165	0.155	0.154	0.153	0.148	0.143	0.143	0.135	0.127
0.49777	0.150	0.145	0.145	0.145	0.141	0.137	0.139	0.130	0.124
0.59750	0.151	0.148	0.149	0.150	0.149	0.148	0.147	0.139	0.132
0.68694	0.117	0.114	0.115	0.117	0.115	0.113	0.115	0.104	0.103
0.82939	0.080	0.078	0.080	0.082	0.078	0.080	0.081	0.069	0.073
0.90250	0.034	0.035	0.035	0.036	0.037	0.037	0.038	0.027	0.032
				$T = 29^{\circ}$	3 15 K				
0 10985	0 104	0.105	0.103	0.099		0.092	0.086	0.088	0.083
0.21203	0.157	0.153	0.156	0.151		0.142	0.140	0.138	0.131
0.29248	0.160	0.159	0.157	0.154		0.146	0.142	0.141	0.131
0.31601	0.183	0.180	0.180	0.176		0.162	0.160	0.159	0.152
0.40499	0.174	0.173	0.175	0.169		0.161	0.154	0.155	0.147
0 49777	0.160	0.158	0.161	0.162		0.154	0.151	0.150	0.147
0.59750	0.150	0.150	0.151	0.153		0.151	0.145	0.145	0.142
0.68694	0.123	0.122	0.124	0.126		0.121	0.118	0.119	0.116
0.82939	0.075	0.073	0.076	0.078		0.074	0.075	0.075	0.074
0.90250	0.034	0.034	0.036	0.037		0.035	0.036	0.035	0.035
				T 000	15 17				
0 10005	0.107	0.100	0.104	I = 298	5.15 K	0.007	0.005	0.002	0.072
0.10985	0.107	0.108	0.104	0.098	0.093	0.087	0.085	0.083	0.073
0.21203	0.156	0.156	0.156	0.148	0.141	0.140	0.135	0.129	0.121
0.29248	0.163	0.164	0.162	0.157	0.154	0.149	0.144	0.140	0.132
0.31601	0.173	0.177	0.176	0.170	0.171	0.164	0.166	0.165	0.153
0.40499	0.181	0.180	0.179	0.169	0.164	0.160	0.155	0.155	0.140
0.49777	0.167	0.100	0.105	0.162	0.161	0.150	0.154	0.151	0.145
0.59750	0.155	0.155	0.155	0.157	0.134	0.131	0.150	0.140	0.144
0.08094	0.129	0.120	0.124	0.123	0.123	0.121	0.120	0.119	0.117
0.02939	0.078	0.081	0.079	0.081	0.082	0.078	0.078	0.079	0.078
0.90250	0.041	0.041	0.040	0.040	0.044	0.040	0.041	0.041	0.041
				T = 303	3.15 K				
0.10985	0.092	0.098	0.095	0.096	0.093	0.086	0.085	0.083	0.081
0.21203	0.106	0.107	0.103	0.113	0.118	0.123	0.123	0.122	0.117
0.29248	0.143	0.147	0.143	0.154	0.153	0.148	0.145	0.143	0.140
0.31601	0.141	0.142	0.142	0.146	0.146	0.148	0.152	0.152	0.145
0.40499	0.150	0.154	0.151	0.164	0.166	0.164	0.159	0.156	0.154
0.49777	0.159	0.16/	0.163	0.16/	0.162	0.161	0.156	0.155	0.152
0.59750	0.150	0.158	0.153	0.154	0.149	0.146	0.145	0.142	0.138
0.68694	0.120	0.127	0.123	0.128	0.128	0.126	0.124	0.124	0.123
0.82939	0.040	0.045	0.046	0.054	0.062	0.068	0.075	0.076	0.074
0.90250	0.037	0.040	0.038	0.042	0.041	0.041	0.041	0.041	0.042
				T = 313	3.15 K				
0.10985	0.107	0.104	0.103	0.096	0.088	0.083	0.079	0.072	0.071
0.21203	0.151	0.148	0.149	0.140	0.134	0.130	0.124	0.119	0.115
0.29248	0.167	0.164	0.168	0.164	0.157	0.150	0.145	0.143	0.138
0.31601	0.181	0.180	0.179	0.177	0.172	0.165	0.159	0.160	0.149
0.40499	0.176	0.178	0.178	0.177	0.174	0.168	0.164	0.161	0.157
0.49777	0.170	0.171	0.171	0.167	0.165	0.162	0.156	0.155	0.150
0.59750	0.149	0.150	0.150	0.154	0.153	0.149	0.149	0.145	0.144
0.68694	0.130	0.129	0.131	0.131	0.131	0.125	0.124	0.122	0.121
0.82939	0.071	0.073	0.073	0.076	0.078	0.074	0.073	0.074	0.073
0.90250	0.040	0.042	0.039	0.042	0.044	0.041	0.041	0.041	0.040
				T = 323	3.15 K				
0.10985	0.101	0.102	0.102	0.095	0.090	0.084	0.081	0.080	0.077
0.21203	0.144	0.148	0.144	0.140	0.137	0.133	0.128	0.127	0.123
0.29248	0.178	0.177	0.177	0.173	0.170	0.169	0.165	0.162	0.157
0.31601	0.187	0.189	0.187	0.183	0.178	0.173	0.170	0.164	0.159
0.40499	0.186	0.187	0.189	0.182	0.181	0.175	0.171	0.167	0.163
0.49777	0.165	0.183	0.171	0.169	0.166	0.162	0.160	0.158	0.154
0.59750	0.150	0.154	0.154	0.153	0.151	0.152	0.147	0.146	0.141
0.68694	0.127	0.130	0.131	0.133	0.131	0.129	0.128	0.128	0.125
0.82939	0.066	0.068	0.070	0.072	0.076	0.075	0.072	0.074	0.072
0.90250	0.034	0.035	0.038	0.037	0.037	0.037	0.036	0.035	0.034

	$V^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$ at $p/{\rm MPa}$										
<i>x</i> ₁	0.1	2.5	5.0	10.0	15.0	20.0	25.0	30.0	35.0		
	T = 333.15 K										
0.10985	0.108	0.107	0.101	0.099	0.094	0.086	0.083	0.081	0.084		
0.21203	0.155	0.122	0.151	0.146	0.138	0.129	0.122	0.118	0.116		
0.29248	0.187	0.187	0.186	0.181	0.176	0.168	0.160	0.158	0.158		
0.31601	0.187	0.187	0.187	0.185	0.180	0.171	0.164	0.163	0.162		
0.40499	0.187	0.187	0.190	0.190	0.185	0.181	0.174	0.172	0.171		
0.49777	0.172	0.173	0.175	0.176	0.174	0.172	0.166	0.166	0.167		
0.59750	0.153	0.159	0.156	0.159	0.157	0.155	0.152	0.147	0.145		
0.68694	0.130	0.130	0.135	0.138	0.140	0.137	0.135	0.135	0.132		
0.82939	0.063	0.064	0.067	0.068	0.068	0.068	0.066	0.066	0.064		
0.90250	0.031	0.029	0.031	0.032	0.037	0.036	0.036	0.037	0.037		

decrease under the same conditions. The extreme values vary in the range $(3.7 \text{ to } 5.4) \cdot 10^{-4} \text{ cm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ for the former and $(-0.65 \text{ to } -0.95) \text{ cm}^3 \cdot \text{mol}^{-1} \cdot \text{GPa}^{-1}$ for the latter derivative.

Conclusions

The volumetric properties of the 1-chloroalkane + n-hexane system have been measured for wide ranges of temperature and pressures. The density data were correlated by an equation suitable to represent simultaneously their temperature, pressure, and composition dependence. The related properties, i.e., excess volumes, isobaric expansivities, and isothermal compressibilities, have been derived from the density data or calculated on the basis of the above-mentioned equation. The observed temperature and pressure influence on the volumetric properties is rather weak but evident and able to be detected experimentally.

Literature Cited

- Diguet, R.; Jadzyn, J. Excess volumes of binary mixtures of isomeric butyl chlorides, pivalonitrile, and methylchloroform with nonpolar solvents. J. Chem. Eng. Data 1982, 27, 86–89.
- (2) Crespo Colin, A.; Vigil, M. R.; Rubio, R. G.; Compostizo, A.; Diaz Peña, M. Temperature and chain-length dependence of the volumetric properties of 1-chlorobutane-alkane mixtures. *J. Chem. Soc., Faraday Trans.* **1991**, 87, 93–99.
- (3) Domínguez, M.; Artigas, H.; Santafé, J.; Mainar, A.; Urieta, J. S. Densities and excess molar volumes of the ternary mixture (1-butanol + n-hexane + 1-chlorobutane) at 298.15 and 313.15 K. Application of the ERAS model. *Fluid Phase Equilib.* **1998**, *145*, 115–128.
- (4) Domínguez, D.; Santafé, J.; López, M. C.; Royo, F. M.; Urieta, J. S. Viscosities of ternary mixture (1-butanol + n-hexane + 1-chlorobutane) at 298.15 and 313.15 K. *Fluid Phase Equilib.* **1998**, *152*, 133–148.
- (5) Kovács, É. E.; Aim, K.; Linek, J. Excess molar volumes of (an alkane + 1-chloroalkane) at T = 298.15 K. J. Chem. Thermodyn. 2001, 33, 33–45.
- (6) Gołdon, A.; Dąbrowska, K.; Hofman, T. Densities, excess volumes, isobaric expansivities, and isothermal compressibilities of the 1-ethyl-3-methylimidazolium ethylsulfate + methanol system at temperatures (283.15 to 333.15) K and pressures from (0.1 to 35) MPa. J. Chem. Eng. Data 2007, 52, 1830–1837.
- (7) Lagourette, B.; Boned, C.; Saint-Guirons, H.; Xans, P.; Zhou, H. Densimeter calibration method versus temperature and pressure. *Meas. Sci. Technol.* **1992**, *3*, 699–703.

- (8) Wagner, W.; Pruβ, A. new international formulation for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 2002, 31, 387–535.
- (9) Morávkova, L.; Linek, J. Excess molar volumes of (heptane + 1-chlorobutane) at elevated temperatures and high pressures. J. Chem. Thermodyn. 2002, 34, 1397–1405.
- (10) Morávková, L.; Linek, J. Excess molar volumes of (octane + 1-chlorobutane) at temperatures between 298.15 and 328.15 K and at pressures up to 40 MPa. J. Chem. Thermodyn. 2003, 35, 113–121.
- (11) García-Giménez, P.; Martínez-López, J. F.; Blanco, S. T.; Velasco, I.; Otín, S. Densities and Isothermal Compressibilities at Pressures up to 20 MPa of the Systems N,N-Dimethylformamide or N,N-Dimethylacetamide + 1-Chloroalkane. J. Chem. Eng. Data 2007, 52, 1693–1699.
- (12) Mopsik, F. I. Dielectric constant of n-hexane as a function of temperature, pressure and density. J. Res. Natl. Bur. Stand. 1967, 71A, 287–292.
- (13) Rastorguyev, Yu. L.; Grigor'ev, B. A.; Kurumov, D. S. Experimental observation of p-V-T dependence of n-hexane in liquid phase at high pressures. Izv. *Vyssh. Ucheb. Zaved.*, *Neft Gaz* **1976**, *19* (11), 61–64. (in Russian).
- (14) Isdale, J. D.; Dymond, J. H.; Brawn, T. A. Viscosity and density of n-hexane - cyclohexane mixtures between 25 and 100 °C up to 500 MPa. *High Temp.-High Pressures* 1979, 11, 571–580.
- (15) Ormanoudis, C.; Dakos, C.; Panayiotou, C. Volumetric properties of binary mixtures. 2. Mixtures of n-hexane with ethanol and 1-propanol. *J. Chem. Eng. Data* **1991**, *36*, 39–42.
- (16) Pečar, D.; Doleček, V. Isothermal compressibilities and isobaric expansibilities of pentane, hexane, heptane and their binary and ternary mixtures from density measurements. *Fluid Phase Equilib.* 2003, 211, 109–127.
- (17) Cibulka, I.; Hnědkovský, L. Liquid densities at elevated pressures of n-alkanes from C₅ to C₁₆: a critical evaluation of experimental data. *J. Chem. Eng. Data* **1996**, *41*, 657–668.
- (18) Hofman, T.; Gołdon, A.; Nevines, A.; Letcher, T. M. Densities, excess volumes, isobaric expansivities, and isothermal compressibilities of the 1-ethyl-3-methylimidazolium ethylsulfate + methanol system at temperatures (283.15 to 333.15) K and pressures from (0.1 to 35) MPa. *J. Chem. Thermodyn.* 2008, in press.
- (19) Matilla, A. D.; Tardajos, G.; Junquera, E.; Aicart, E. Thermodynamic properties for binary liquid mixtures of 1-chlorobutane + n-alkanes. J. Solution Chem. 1991, 20, 805–816.

Received for review January 05, 2008. Accepted January 15, 2008. This research has been financially supported by Warsaw University of Technology.

JE800012V